Author's personal copy Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique

نویسندگان

  • Sang-Eun Oh
  • Yi Zuo
  • Husen Zhang
  • Mark J. Guiltinan
  • Bruce E. Logan
  • John M. Regan
چکیده

Biohydrogen production is measured using a variety of techniques, ranging from low cost intermittent gas release methods where yields are usually reduced due to high partial pressures of hydrogen, to expensive respirometers that can eliminate pressure buildup. A new large headspace volume technique was developed that reduces the potential for hydrogen gas inhibition without the need for a respirometer. We tested this method with two strains of clostridia, Clostridium acetobutylicum ATCC 824 and its mutant M5 that lacks a megaplasmid responsible for butanol and acetone production, and a mixed culture (heattreated sludge). The hydrogen yield using M5 (2.64 mol-H2/mol-glucose) was 47% higher than that of the parent strain (1.79 mol-H2/mol-glucose), and 118% larger than that obtained in tests with the sludge inoculum (1.21 mol-H2/mol-glucose). The increased yield for M5 was primarily due to a decrease in biomass synthesis (38%) compared to the parent strain. Hydrogen yields measured using this new method were on average 14% higher than those obtained using a conventional respirometric method. These findings indicate enhanced biohydrogen production from the megaplasmid-deficient mutant of C. acetobutylicum ATCC 824, and that an intermittent gas-sampling technique can effectively measure high hydrogen gas by using a large headspace volume. a 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic engineering of Clostridium acetobutylicum M5 for highly selective butanol production.

To improve butanol selectivity, Clostridium acetobutylicum M5(pIMP1E1AB) was constructed by adhE1-ctfAB complementation of C. acetobutylicum M5, a derivative strain of C. acetobutylicum ATCC 824, which does not produce solvents due to the lack of megaplasmid pSOL1. The gene products of adhE1-ctfAB catalyze the formation of acetoacetate and ethanol/butanol with acid re-assimilation in solventoge...

متن کامل

Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824

BACKGROUND Clostridium acetobutylicum represents a paradigm chassis for the industrial production of the biofuel biobutanol and a focus for metabolic engineering. We have previously developed procedures for the creation of in-frame, marker-less deletion mutants in the pathogen Clostridium difficile based on the use of pyrE and codA genes as counter selection markers. In the current study we sou...

متن کامل

SpoIIE regulates sporulation but does not directly affect solventogenesis in Clostridium acetobutylicum ATCC 824.

Using gene expression reporter vectors, we examined the activity of the spoIIE promoter in wild-type and spo0A-deleted strains of Clostridium acetobutylicum ATCC 824. In wild-type cells, the spoIIE promoter is active in a transient manner during late solventogenesis, but in strain SKO1, where the sporulation initiator spo0A is disrupted, no spoIIE promoter activity is detectable at any stage of...

متن کامل

Spontaneous large-scale autolysis in Clostridium acetobutylicum contributes to generation of more spores

Autolysis is a widespread phenomenon in bacteria. In batch fermentation of Clostridium acetobutylicum ATCC 824, there is a spontaneous large-scale autolysis phenomenon with significant decrease of cell density immediately after exponential phase. To unravel the role of autolysis, an autolysin-coding gene, CA_C0554, was disrupted by using ClosTron system to obtain the mutant C. acetobutylicum ly...

متن کامل

Isolation and Characterization of Mutants of Clostridium acetobutylicum ATCC 824 Deficient in Acetoacetyl-Coenzyme A:Acetate/Butyrate:Coenzyme A-Transferase (EC 2.8.3.9) and in Other Solvent Pathway Enzymes.

Mutants of Clostridium acetobutylicum ATCC 824 exhibiting resistance to 2-bromobutyrate or rifampin were isolated after nitrosoguanidine treatment. Mutants were screened for solvent production by using an automated alcohol test system. Isolates were analyzed for levels of butanol, ethanol, acetone, butyrate, acetate, and acetoin in stationary-phase batch cultures. The specific activities of NAD...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009